Mxenes are 2D transition metal carbides, nitrides, and carbonitides that perform exceptional properties in several fields (Jhon, Seo, & Jhon, 2018: Han, et al., 2018). Mxenes can be applied in a variety of fields including theranostic nanomedicine, drug delivery, imaging, cancer therapy, and detection of terahertz (Jhon, Seo, & Jhon, 2018: Han, et al., 2018: Canfarotta & Piletsky, 2013). Further, Mxene can be used to make Ni-dMXNC nanostructures that can be used as electrodes in various developments including "manufacture of energy-storage devices such as electrochemical capacitors, lithium- and sodium-ion batteries, lithium-sulfur batteries, and flexible on-paper energy storages" (Xia, Fu, Yun, Mane, & Kim, 2017: Zhao, et al., 2017: Yoon, Lee, & Lee, 2016: Kurra, Ahmed, Gogotsi, & Alshareef, 2016: Xu, Liu, Liu, Kuang, & Wang, 2017). A component of Mxene, Fe 2 C is an intrinsic ferromagnetic component that can promote the use of Mxene in spintronic applications (Yue, 2017). Mxene nanosheets and TiO2 nanoparticles can also be assembled in a macroporous support to prepare mesoporous membranes useful in biomedical and lamellar membranes useful in water purification (Xu, et al., 2018: Ding, et al., 2017). These nano/micro-technologies are used in the engineering interfaces that permit control over microbiological and cellular behavior (Mano, Choi, & Khademhosseini, 2017). Biomedical biosensors, created by Mxene can be used in high-throughput and highly-sensitive biological assays (Mano, Choi, & Khademhosseini, 2017).
Additionally, through the photocatalytic properties of Mxenes, photocatalysts suitable for photocatalytic water splitting can be determined to later produce hydrogen in presence of sunlight (Guo, Zhou, Zhu, & Sun, 2016). Through their metallic, hydrophilic or semiconducting properties, Mxenes can also be used for energy conversion at elevated temperatures (Khazaei, Arai, Sasaki, Estili, & Sakka, 2014: Mashtalir, Lukatskaya, Zhao, Barsoum, & Gogotsi, 2015). Further, Mxene can be used to design novel single-layered sheets useful in electronics for biomedical suites, composite materials, and accelerators of crystallization rate besides energy technology (Wang, et al., 2017: Cao, et al., 2017). Mxenes can also be used to make metal-free catalysts useful in advanced oxidation technology in biomedical engineering (Liu, Yu, Ong, & Xie, 2016). Since Mxenes have electronic and thermal properties that are dependent on chemical composition and functionalization, their thermoelectric properties can be used to exploit energy conservation devices (Sarikurt, Cakir, Keceli, & Sevik, 2018: Berdiyorov, 2015).
References
Berdiyorov, G. R. (2015). Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene. EPL (Europhysics Letters), 111(6), 67002. doi:10.1209/0295-5075/111/67002
Canfarotta, F., & Piletsky, S. A. (2013). Engineered Magnetic Nanoparticles for Biomedical Applications. Advanced Healthcare Materials, 3(2), 160-175. doi:10.1002/adhm.201300141
Cao, X., Wu, M., Zhou, A., Wang, Y., He, X., & Wang, L. (2017). Non-isothermal crystallization and thermal degradation kinetics of MXene/linear low-density polyethylene nanocomposites. E-Polymers, 17(5). doi:10.1515/epoly-2017-0017
Ding, L., Wei, Y., Wang, Y., Chen, H., Caro, J., & Wang, H. (2017). A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks. Angewandte Chemie International Edition, 56(7), 1825-1829. doi:10.1002/anie.201609306
Guo, Z., Zhou, J., Zhu, L., & Sun, Z. (2016). MXene: A promising photocatalyst for water splitting. Journal of Materials Chemistry A, 4(29), 11446-11452. doi:10.1039/c6ta04414j
Han, X., Huang, J., Lin, H., Wang, Z., Li, P., & Chen, Y. (2018). 2D Ultrathin MXene-Based Drug-Delivery Nanoplatform for Synergistic Photothermal Ablation and Chemotherapy of Cancer. Advanced Healthcare Materials, 1701394. doi:10.1002/adhm.201701394
Jhon, Y. I., Seo, M., & Jhon, Y. M. (2018). First-principles study of a MXene terahertz detector. Nanoscale, 10(1), 69-75. doi:10.1039/c7nr05351g
Khazaei, M., Arai, M., Sasaki, T., Estili, M., & Sakka, Y. (2014). Two-dimensional molybdenum carbides: Potential thermoelectric materials of the MXene family. Phys. Chem. Chem. Phys., 16(17), 7841-7849. doi:10.1039/c4cp00467a
Kurra, N., Ahmed, B., Gogotsi, Y., & Alshareef, H. N. (2016). MXene-on-Paper Coplanar Microsupercapacitors. Advanced Energy Materials, 6(24), 1601372. doi:10.1002/aenm.201601372
Liu, Y., Yu, L., Ong, C. N., & Xie, J. (2016). Nitrogen-doped graphene nanosheets as reactive water purification membranes. Nano Research, 9(7), 1983-1993. doi:10.1007/s12274-016-1089-7
Mano, J. F., Choi, I. S., & Khademhosseini, A. (2017). Biomimetic Interfaces in Biomedical Devices. Advanced Healthcare Materials, 6(15), 1700761. doi:10.1002/adhm.201700761
Mashtalir, O., Lukatskaya, M. R., Zhao, M., Barsoum, M. W., & Gogotsi, Y. (2015). Amine-Assisted Delamination of Nb2C MXene for Li-Ion Energy Storage Devices. Advanced Materials, 27(23), 3501-3506. doi:10.1002/adma.201500604
Sarikurt, S., Cakir, D., Keceli, M., & Sevik, C. (2018). Influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers. Nanoscale. doi:10.1039/c7nr09144c
Wang, D., Sun, Z., Han, D., Liu, L., & Niu, L. (2017). Ti3BN monolayer: The MXene-like material predicted by first-principles calculations. RSC Advances, 7(20), 11834-11839. doi:10.1039/c7ra00483d
Xia, Q. X., Fu, J., Yun, J. M., Mane, R. S., & Kim, K. H. (2017). High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor. RSC Advances, 7(18), 11000-11011. doi:10.1039/c6ra27880a
Xu, S., Liu, W., Liu, X., Kuang, X., & Wang, X. (2017). A MXene based all-solid-state microsupercapacitor with 3D interdigital electrode. 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). doi:10.1109/transducers.2017.7994146
Xu, Z., Sun, Y., Zhuang, Y., Jing, W., Ye, H., & Cui, Z. (2018). Assembly of 2D MXene Nanosheets and TiO 2 Nanoparticles for Fabricating Mesoporous TiO 2 -MXene Membranes. Journal of Membrane Science. doi:10.1016/j.memsci.2018.03.077
Yoon, Y., Lee, K., & Lee, H. (2016). Low-dimensional carbon and MXene-based electrochemical capacitor electrodes. Nanotechnology, 27(17), 172001. doi:10.1088/0957-4484/27/17/172001
Yue, Y. (2017). Fe 2 C monolayer: An intrinsic ferromagnetic MXene. Journal of Magnetism and Magnetic Materials, 434, 164-168. doi:10.1016/j.jmmm.2017.03.058
Zhao, M., Xie, X., Ren, C. E., Makaryan, T., Anasori, B., Wang, G., & Gogotsi, Y. (2017). Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na-Ion Storage. Advanced Materials, 29(37), 1702410. doi:10.1002/adma.201702410
Cite this page
MXene Application on Biomedical Essay. (2022, May 06). Retrieved from https://proessays.net/essays/mxene-application-on-biomedical-essay
If you are the original author of this essay and no longer wish to have it published on the ProEssays website, please click below to request its removal:
- Evaluation of Arguments by Two Authors on the Value of Vaccination
- Research Paper on HIV Issue in India
- Essay Sample on Moral Principles to Moral Dilemmas in Medicine
- Essay on Estonia Protects People With Disabilities: Challenges and Opportunities
- Preparing African Women for PrEP: Rethinking HIV Prevention - Annotated Bibliography
- Essay on Improving US Healthcare System Efficiency with Tech, Transparency & Follow-Ups
- Essay on Revolutionizing Perioperative Nursing: Integrating Smart Hospital Technologies for Enhanced Patient Care