MXene Application on Biomedical Essay

Paper Type:  Essay
Pages:  4
Wordcount:  871 Words
Date:  2022-05-06

Mxenes are 2D transition metal carbides, nitrides, and carbonitides that perform exceptional properties in several fields (Jhon, Seo, & Jhon, 2018: Han, et al., 2018). Mxenes can be applied in a variety of fields including theranostic nanomedicine, drug delivery, imaging, cancer therapy, and detection of terahertz (Jhon, Seo, & Jhon, 2018: Han, et al., 2018: Canfarotta & Piletsky, 2013). Further, Mxene can be used to make Ni-dMXNC nanostructures that can be used as electrodes in various developments including "manufacture of energy-storage devices such as electrochemical capacitors, lithium- and sodium-ion batteries, lithium-sulfur batteries, and flexible on-paper energy storages" (Xia, Fu, Yun, Mane, & Kim, 2017: Zhao, et al., 2017: Yoon, Lee, & Lee, 2016: Kurra, Ahmed, Gogotsi, & Alshareef, 2016: Xu, Liu, Liu, Kuang, & Wang, 2017). A component of Mxene, Fe 2 C is an intrinsic ferromagnetic component that can promote the use of Mxene in spintronic applications (Yue, 2017). Mxene nanosheets and TiO2 nanoparticles can also be assembled in a macroporous support to prepare mesoporous membranes useful in biomedical and lamellar membranes useful in water purification (Xu, et al., 2018: Ding, et al., 2017). These nano/micro-technologies are used in the engineering interfaces that permit control over microbiological and cellular behavior (Mano, Choi, & Khademhosseini, 2017). Biomedical biosensors, created by Mxene can be used in high-throughput and highly-sensitive biological assays (Mano, Choi, & Khademhosseini, 2017).

Trust banner

Is your time best spent reading someone else’s essay? Get a 100% original essay FROM A CERTIFIED WRITER!

Additionally, through the photocatalytic properties of Mxenes, photocatalysts suitable for photocatalytic water splitting can be determined to later produce hydrogen in presence of sunlight (Guo, Zhou, Zhu, & Sun, 2016). Through their metallic, hydrophilic or semiconducting properties, Mxenes can also be used for energy conversion at elevated temperatures (Khazaei, Arai, Sasaki, Estili, & Sakka, 2014: Mashtalir, Lukatskaya, Zhao, Barsoum, & Gogotsi, 2015). Further, Mxene can be used to design novel single-layered sheets useful in electronics for biomedical suites, composite materials, and accelerators of crystallization rate besides energy technology (Wang, et al., 2017: Cao, et al., 2017). Mxenes can also be used to make metal-free catalysts useful in advanced oxidation technology in biomedical engineering (Liu, Yu, Ong, & Xie, 2016). Since Mxenes have electronic and thermal properties that are dependent on chemical composition and functionalization, their thermoelectric properties can be used to exploit energy conservation devices (Sarikurt, Cakir, Keceli, & Sevik, 2018: Berdiyorov, 2015).

References

Berdiyorov, G. R. (2015). Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene. EPL (Europhysics Letters), 111(6), 67002. doi:10.1209/0295-5075/111/67002

Canfarotta, F., & Piletsky, S. A. (2013). Engineered Magnetic Nanoparticles for Biomedical Applications. Advanced Healthcare Materials, 3(2), 160-175. doi:10.1002/adhm.201300141

Cao, X., Wu, M., Zhou, A., Wang, Y., He, X., & Wang, L. (2017). Non-isothermal crystallization and thermal degradation kinetics of MXene/linear low-density polyethylene nanocomposites. E-Polymers, 17(5). doi:10.1515/epoly-2017-0017

Ding, L., Wei, Y., Wang, Y., Chen, H., Caro, J., & Wang, H. (2017). A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks. Angewandte Chemie International Edition, 56(7), 1825-1829. doi:10.1002/anie.201609306

Guo, Z., Zhou, J., Zhu, L., & Sun, Z. (2016). MXene: A promising photocatalyst for water splitting. Journal of Materials Chemistry A, 4(29), 11446-11452. doi:10.1039/c6ta04414j

Han, X., Huang, J., Lin, H., Wang, Z., Li, P., & Chen, Y. (2018). 2D Ultrathin MXene-Based Drug-Delivery Nanoplatform for Synergistic Photothermal Ablation and Chemotherapy of Cancer. Advanced Healthcare Materials, 1701394. doi:10.1002/adhm.201701394

Jhon, Y. I., Seo, M., & Jhon, Y. M. (2018). First-principles study of a MXene terahertz detector. Nanoscale, 10(1), 69-75. doi:10.1039/c7nr05351g

Khazaei, M., Arai, M., Sasaki, T., Estili, M., & Sakka, Y. (2014). Two-dimensional molybdenum carbides: Potential thermoelectric materials of the MXene family. Phys. Chem. Chem. Phys., 16(17), 7841-7849. doi:10.1039/c4cp00467a

Kurra, N., Ahmed, B., Gogotsi, Y., & Alshareef, H. N. (2016). MXene-on-Paper Coplanar Microsupercapacitors. Advanced Energy Materials, 6(24), 1601372. doi:10.1002/aenm.201601372

Liu, Y., Yu, L., Ong, C. N., & Xie, J. (2016). Nitrogen-doped graphene nanosheets as reactive water purification membranes. Nano Research, 9(7), 1983-1993. doi:10.1007/s12274-016-1089-7

Mano, J. F., Choi, I. S., & Khademhosseini, A. (2017). Biomimetic Interfaces in Biomedical Devices. Advanced Healthcare Materials, 6(15), 1700761. doi:10.1002/adhm.201700761

Mashtalir, O., Lukatskaya, M. R., Zhao, M., Barsoum, M. W., & Gogotsi, Y. (2015). Amine-Assisted Delamination of Nb2C MXene for Li-Ion Energy Storage Devices. Advanced Materials, 27(23), 3501-3506. doi:10.1002/adma.201500604

Sarikurt, S., Cakir, D., Keceli, M., & Sevik, C. (2018). Influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers. Nanoscale. doi:10.1039/c7nr09144c

Wang, D., Sun, Z., Han, D., Liu, L., & Niu, L. (2017). Ti3BN monolayer: The MXene-like material predicted by first-principles calculations. RSC Advances, 7(20), 11834-11839. doi:10.1039/c7ra00483d

Xia, Q. X., Fu, J., Yun, J. M., Mane, R. S., & Kim, K. H. (2017). High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor. RSC Advances, 7(18), 11000-11011. doi:10.1039/c6ra27880a

Xu, S., Liu, W., Liu, X., Kuang, X., & Wang, X. (2017). A MXene based all-solid-state microsupercapacitor with 3D interdigital electrode. 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). doi:10.1109/transducers.2017.7994146

Xu, Z., Sun, Y., Zhuang, Y., Jing, W., Ye, H., & Cui, Z. (2018). Assembly of 2D MXene Nanosheets and TiO 2 Nanoparticles for Fabricating Mesoporous TiO 2 -MXene Membranes. Journal of Membrane Science. doi:10.1016/j.memsci.2018.03.077

Yoon, Y., Lee, K., & Lee, H. (2016). Low-dimensional carbon and MXene-based electrochemical capacitor electrodes. Nanotechnology, 27(17), 172001. doi:10.1088/0957-4484/27/17/172001

Yue, Y. (2017). Fe 2 C monolayer: An intrinsic ferromagnetic MXene. Journal of Magnetism and Magnetic Materials, 434, 164-168. doi:10.1016/j.jmmm.2017.03.058

Zhao, M., Xie, X., Ren, C. E., Makaryan, T., Anasori, B., Wang, G., & Gogotsi, Y. (2017). Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na-Ion Storage. Advanced Materials, 29(37), 1702410. doi:10.1002/adma.201702410

Cite this page

MXene Application on Biomedical Essay. (2022, May 06). Retrieved from https://proessays.net/essays/mxene-application-on-biomedical-essay

logo_disclaimer
Free essays can be submitted by anyone,

so we do not vouch for their quality

Want a quality guarantee?
Order from one of our vetted writers instead

If you are the original author of this essay and no longer wish to have it published on the ProEssays website, please click below to request its removal:

didn't find image

Liked this essay sample but need an original one?

Hire a professional with VAST experience and 25% off!

24/7 online support

NO plagiarism