Introduction
Soccer is one of the most played and watched sport around the world. It consists of 22 players in total, eleven for each team in the field. Just like every other game, this is no exception to following rules. The players are allowed to make use of their bodies to move the ball throughout the match, apart from their hands.
The only player in the game that is allowed to use their hands during the match is the goalkeeper of each team to stop the ball from entering into the net. What most people do not realize about the sport is that it is not just running around in the field and kicking the ball. Not only does football strategy while playing it but also, brilliance, skill, and litheness, all of which can be mathematically interpreted.
Also, what people do not realize is that it is possible to compute the distance required by the wall of defending players that will obstruct the goal post within the angle of a straight kick. Moreover, using math, it is also probable to identify the most suitable spot for both straight, corner and curved kicks. In the article below, I discuss how both math and soccer come into play to determine a winning score.
As fans who like to watch the game, the fanciest thing about football is the footwork involved. We are fascinated by how the soccer players shoot and pass the ball on the field. As the football players run around the field, they are needed to compute immediately what the best angle to the next player will be (Curtis, et al, 128). If a player makes an improper calculation, the chances of scoring for the team are greatly reduced. However, when they find the best angle to shoot the ball and pass it on, they make use of their agile skills to implement their judgment (Brito, et al, 175).
The soccer player fine-tunes their foot at a particular angle directed to keep the ball from the goalkeeper. At the same time, the goalkeeper will then make a prompt verdict on how to keep the ball from entering the net, therefore will take the right angle with their entire body. Every shot is full of geometry.
The field in which the game is being played is valued numerically. The lines marked in the field represent either distance, shape or measurement. From an aerial view, the soccer field usually looks as if the building shapes have been put together to form a field of play. All the shapes in the field should be rectangular apart from the corner arcs, the goal areas, penalty areas which are tactfully positioned to acclimate both the players and the game.
These dimensions have to be precise to have an even playing field (Lake, 25). Symmetry in math is responsible for this. It is very important to consider the shape of the ball too. It should be globular to ensure the ball has soft edges and that the ball rolls whenever it is on the ground. Just imagine a soccer ball in any other shape. When thrown, that force would slow it down to a halt instead of rolling as it should.
All the numbers seen in the football game have numerical values and carry with them great significance for the playing teams. The match itself is timed ninety minutes, and sometimes some extra minutes are added thus giving each of the playing teams a chance to score and win.
It is worth noting that during that period, goals, substitutions, and injuries are recorded at which they happened. Stats (shots, fouls, and saves) are detailed throughout the match. These numbers are used to predict future results for both the individual players and their teams in entirety (Clemente, et al, 65). Moreover, evaluations will be made between the documented figures for each team in the club.
Soccer relates to trigonometry from when the ball goes into the goal. You can find the angle of the kick and the ball going in by looking at the angle and the height of the goal. If you think about it, you have to be able to calculate your distance and the height of the goal to be able to know how far away you need to be or how close you need to be and the angle for the ball to go into the goal. Thus, if a net is 24 meters tall and the distance the play is from the goal is 48 meters and we are trying to find the angle of the player kicking the ball, you would use tangent for this because it is opposite over adjacent other than opposite over hypotenuse of adjacent over hypotenuse.
Conclusion
Conclusively, soccer or as it is popularly known as football offers sufficient evidence that mathematics is a prized facet in not just the game, but all sports. Therefore, for a player to become brilliant in their skill, they need to practice their math as that may aid their winning.
Works Cited
Brito, Angelo, et al. "Effects of the Pitch Surface on Displacement of Youth Players During Soccer Match-Play." Journal of human kinetics 65 (2018): 175.
Clemente, Filipe Manuel, et al. Computational metrics for soccer analysis: Connecting the dots. Heidelberg: Springer, 2018.
Curtis, Ryan, et al. "Elite Soccer Players: Maximizing Performance and Safety." (2019).
Lake, Matthew J. "A solution to the soccer ball problem for generalised uncertainty relations." arXiv preprint arXiv:1912.07093 (2019).
Cite this page
Soccer: A Sport of Rules, Players, and Goals - Essay Sample. (2023, May 14). Retrieved from https://proessays.net/essays/soccer-a-sport-of-rules-players-and-goals-essay-sample
If you are the original author of this essay and no longer wish to have it published on the ProEssays website, please click below to request its removal:
- Organizational Behavior Questions and Answers
- Accrington Stanley and Social Media Marketing Essay
- Multimodal Medium Essay: Need for Personal Fitness
- Importance of FEP - Essay Sample
- Steroid Use in the MLB: 50 Year History - Research Paper
- Essay Example on Olympic Athletes: Mental Imagery & Performance Stress Strategies
- Essay Sample on Young Athlete Performance: Training Program for the Youth