Mesh Network Implementation

Date:  2021-03-05 09:10:57
3 pages  (556 words)
Back to list
logo_disclaimer
This essay has been submitted by a student.
This is not an example of the work written by our professional essay writers.

In this design, Mesh topology will be implemented.

If this sample essay on"Mesh Network Implementation" doesn’t help,
our writers will!

Mesh topology provides point-to-point connection between every device on the network, (Oppenheimer, 2005)

Routers will be used to determine the best path, (Groth, (2006).

Mesh network provides redundancy. In the event one link fails, data can be routed through another available route, (Chen, Nixon & Mok, 2010)

Mesh topology

Network media

Two internet routers

Eleven internal routers

Twenty 24-port switches

Cat 6 Ethernet cables

IP ADDRESSES ALLOCATION

Network representations

Each network will have one router

S- Student Lab 30 computers, 1 server = 31 IP addresses

L1= Laboratory 1 25 PC, 1 server, 4 printers = 30 IP addresses

L2= Laboratory 2 25 PC, 1 server, 4 printers = 30 IP addresses

L3= Laboratory 325 PC, 1 server, 4 printers = 30 IP addresses

L4= Laboratory 425 PC, 1 server, 4 printers = 30 IP addresses

L5= Laboratory 525 PC, 1 server, 4 printers = 30 IP addresses

L6= Laboratory 625 PC, 1 server, 4 printers = 30 IP addresses

LIB= Library10 Staff PC, 5 student PC, 3 printers = 18 IP addresses

LEC= Lecture rooms 1 PC for each of 5 rooms = 5 IP addresses

ADMIN= Administration block 5 PCs, 5 printers = 10 IP addresses

FAC= Faculty6 PCs, 6 printers = 12 IP addresses

I1 = Internet router 1 Every internal router (11) will connect to it 2*11 = 22 IP addresses

I2 = Internet router 2 Every internal router (11) will connect to it 2*11 = 22 IP addresses

S-I1 represents point-to-point network between Student Lab router and Internet router one, it follows all through as represented by symbols in the table below.

SUBNETTING

10.11.0.0/16 is subnetted using Variable Length Subnet Mask (VLSM), (Odom, 2012) to achieve the following networks in the table;

Subnet Name Size Allocated Size Address Mask Dec Mask Assignable Range Broadcast

S 32 62 10.11.0.0 /26 255.255.255.192 10.11.0.1 - 10.11.0.62 10.11.0.63

L1 30 30 10.11.0.64 /27 255.255.255.224 10.11.0.65 - 10.11.0.94 10.11.0.95

L2 30 30 10.11.0.96 /27 255.255.255.224 10.11.0.97 - 10.11.0.126 10.11.0.127

L3 30 30 10.11.0.128 /27 255.255.255.224 10.11.0.129 - 10.11.0.158 10.11.0.159

L4 30 30 10.11.0.160 /27 255.255.255.224 10.11.0.161 - 10.11.0.190 10.11.0.191

L5 30 30 10.11.0.192 /27 255.255.255.224 10.11.0.193 - 10.11.0.222 10.11.0.223

L6 30 30 10.11.0.224 /27 255.255.255.224 10.11.0.225 - 10.11.0.254 10.11.0.255

LIB 18 30 10.11.1.0 /27 255.255.255.224 10.11.1.1 - 10.11.1.30 10.11.1.31

FAC 12 14 10.11.1.32 /28 255.255.255.240 10.11.1.33 - 10.11.1.46 10.11.1.47

ADMIN 10 14 10.11.1.48 /28 255.255.255.240 10.11.1.49 - 10.11.1.62 10.11.1.63

LEC 5 6 10.11.1.64 /29 255.255.255.248 10.11.1.65 - 10.11.1.70 10.11.1.71

ADMIN-I1 2 2 10.11.1.72 /30 255.255.255.252 10.11.1.73 - 10.11.1.74 10.11.1.75

ADMIN-I2 2 2 10.11.1.76 /30 255.255.255.252 10.11.1.77 - 10.11.1.78 10.11.1.79

FAC-I1 2 2 10.11.1.80 /30 255.255.255.252 10.11.1.81 - 10.11.1.82 10.11.1.83

FAC-I2 2 2 10.11.1.84 /30 255.255.255.252 10.11.1.85 - 10.11.1.86 10.11.1.87

L1-I1 2 2 10.11.1.88 /30 255.255.255.252 10.11.1.89 - 10.11.1.90 10.11.1.91

L1-I2 2 2 10.11.1.92 /30 255.255.255.252 10.11.1.93 - 10.11.1.94 10.11.1.95

L2-I1 2 2 10.11.1.96 /30 255.255.255.252 10.11.1.97 - 10.11.1.98 10.11.1.99

L2-I2 2 2 10.11.1.100 /30 255.255.255.252 10.11.1.101 - 10.11.1.102 10.11.1.103

L3-I1 2 2 10.11.1.104 /30 255.255.255.252 10.11.1.105 - 10.11.1.106 10.11.1.107

L3-I2 2 2 10.11.1.108 /30 255.255.255.252 10.11.1.109 - 10.11.1.110 10.11.1.111

L4-I1 2 2 10.11.1.112 /30 255.255.255.252 10.11.1.113 - 10.11.1.114 10.11.1.115

L4-I2 2 2 10.11.1.116 /30 255.255.255.252 10.11.1.117 - 10.11.1.118 10.11.1.119

L5-I1 2 2 10.11.1.120 /30 255.255.255.252 10.11.1.121 - 10.11.1.122 10.11.1.123

L5-I2 2 2 10.11.1.124 /30 255.255.255.252 10.11.1.125 - 10.11.1.126 10.11.1.127

L6-I1 2 2 10.11.1.128 /30 255.255.255.252 10.11.1.129 - 10.11.1.130 10.11.1.131

L6-I2 2 2 10.11.1.132 /30 255.255.255.252 10.11.1.133 - 10.11.1.134 10.11.1.135

LEC-I1 2 2 10.11.1.136 /30 255.255.255.252 10.11.1.137 - 10.11.1.138 10.11.1.139

LEC-I2 2 2 10.11.1.140 /30 255.255.255.252 10.11.1.141 - 10.11.1.142 10.11.1.143

LIB-I1 2 2 10.11.1.144 /30 255.255.255.252 10.11.1.145 - 10.11.1.146 10.11.1.147

LIB-I2 2 2 10.11.1.148 /30 255.255.255.252 10.11.1.149 - 10.11.1.150 10.11.1.151

S-I1 2 2 10.11.1.152 /30 255.255.255.252 10.11.1.153 - 10.11.1.154 10.11.1.155

S-I2 2 2 10.11.1.156 /30 255.255.255.252 10.11.1.157 - 10.11.1.158 10.11.1.159

CORE NETWORK

The network will have two internet routers (Cisco 2901 series) to provide redundancy; I1 and I2. Every other internal router is connected to the two using point-to-point with respective IPs from the table routers via the core 24 port switches.

Student Laboratory

The router, switch and server will be placed in room. Cables will be run through trunks around the room to connect to workstations. The five PCs represent the 30 computers. The following is the representation;

Laboratory networks

The two computers represent all the 24 computers. All the laboratory setups will be similar; router, switch and server are placed in admin room then cables are run from the switch to all the workstations, (Elliott, 2002) in the laboratory room

Lab 1

Library network

The router and switch are placed in a room only accessible by staff, staff and student PCs are placed appropriately where cables can be run from the switch. Printers are also served with Ethernet cables.

Administration network

Faculty network

Router and switch are placed in same room and cat 6 cables are run to each of the 6 faculty offices.

Lecture rooms network

Router and switch are placed in a central room and cat 6 cables are run to the 5 rooms

References

Chen, D., Nixon, M., & Mok, A. K.-L. (2010). WirelessHART: Real-time mesh network for industrial automation. New York: Springer.

Elliott, B. J. (2002). Designing a structured cabling system to ISO 11801: Cross-referenced to European CENELEC and American standards. Cambridge: Woodhead Publ.

Groth, D. (2006). CompTIA A+ complete study guide. San Francisco, Calif: Sybex.

Odom, W. (2012). CCNA ICND2: 640-816 official cert guide. Indianapolis: Cisco Press.

Oppenheimer, P. (2005). Top-Down Network Design, Second Edition. Cisco Press.

If you are the original author of this essay and no longer wish to have it published on the ProEssays website, please click below to request its removal: